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Abstract 

Short-term traffic flow forecasting plays a significant role in the Intelligent Transportation Systems (ITS), especially for 
traffic signal control and transportation planning research. Two mainly problems restrict the forecasting of urban freeway 
traffic parameters. One is the freeway traffic changes non-regularly under the heterogeneous traffic conditions, and the other 
is the successful predictability decreases sharply in multiple-steps-ahead prediction. In this paper, we present a novel pattern-
based short-term traffic forecasting approach based on the integration of multi-phase traffic flow theory and time series 
analysis methods. For the purpose of prediction, the historical traffic data are classified by the dynamic flow-density relation 
into three traffic patterns (free flow, synchronized and congested pattern), and then different predict models are built 
respectively according to the classified traffic patterns. With the current traffic data, the future traffic state can be online 
predicted by means of pattern matching to identify traffic patterns. Finally, a comparative study in a section of the Third-Loop 
Freeway, LIULIQIAO, Beijing city, shows that the proposed approach represents more accurately the anticipated traffic flow 
when compared to the classical time series models that without integration with the traffic flow theory. 

Keywords: Traffic forecasting, Multi-phase traffic flow theory, Auto regressive integrated moving average (ARIMA). 

1. Introduction 

With the growth of vehicles, traffic congestion on the 
freeway system is becoming more and more worrying. 
This is particularly obvious near big cities at morning and 
evening rush hours. To relieve traffic congestion, 
Intelligent Transportation Systems (ITSs) is introduced, 
which encompass a broad range of communication and 
electronic based technologies. With ITSs, freeway traffic 
is no more passive but interacts with the drivers to increase 
the global efficiency of transportation networks.  

Short-term traffic prediction is one of the basic aspects 
for optimizing the transportation system operations. Many 
efforts on the short-term traffic flow forecasting ranging 
from time series models [1,2,3], nonparametric statistical 
methods [2,4], neutral networks [4], and Kalman filtering 
[5,6,7,8] can be traced in the literature. The review work 
of Vlahogianni et al. [9] has indicated that the 
nonparametric techniques have performances comparable 
to simple autoregressive integrated moving average 
(ARIMA) models.  
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Huynh et al. [10] implements an adaptive model in which 
the model parameters are updated online periodically (e.g., 
every 5 min) based on the prevailing traffic conditions. 

Cetin and Comert propose an adaptive approach [11], 
which explicitly accounts for occasional regime changes 
by using online change-point detection algorithms. 

Although these methods have given promising results, 
there are some practical issues that fail at being addressed, 
such as their reduced performance of multiple-steps-ahead 
prediction in the transitional conditions. A recent study 
shows that the performance decreases sharply as traffic 
state transfers from free flow to congested, causing errors 
as high as 30% [9]. This could be due to traffic data 
exhibit a highly fluctuating behavior with frequent and 
sudden transitions between different traffic states under the 
heterogeneous traffic conditions, and the behavior that 
cannot be modeled directly by these methods may 
encompass useful information to predict future values of 
traffic flow. 

This paper proposes a pattern-based prediction 
framework that is consistent with the evolution of traffic 
flow theory and the ability of exploiting past traffic pattern 
information in order to enhance predictability. The 
proposed framework, which includes two main parts (see 
Fig. 1): offline part and online part, differs from previous 
studies in that it is addressed by referring the traffic pattern 
of traffic flow evolution. The term traffic pattern described 
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with ARIMA model has been acquired from the past in 
order to predict the future value of traffic flow. First, 
historical traffic data is classified by the flow-density 
relation into three traffic states (free, synchronized and 
congested). Several historical traffic patterns then are built 
respectively according to the classified historical traffic 
data. The current traffic pattern can be easily identified by 
means of matching historical traffic patterns with the 
autoregressive parameters of real-time traffic data. Finally, 
it is to implement the matched pattern to provide a 
multiple-steps-ahead prediction of traffic flow. Findings 
indicate that pattern-based forecasting is more accurate, in 
the traffic flow states considered, when compared to 
classical ARIMA models that only operate under the time 
series consideration. 

 

Fig. 1 Overview of the proposed framework 
 
The remainder of the paper is organized as follows. 

The fundamental theoretical aspects of the proposed 
framework are presented in Section 2. Section 3 presents a 
comparative study on a section of the Third-Loop 
Freeway, LIULIQIAO, Beijing city, to test the proposed 
framework. The conclusions of this paper are given in 
section 4. 

2. Pattern-based Short Term Traffic Flow 
Forecasting 

2.1. Traffic state classification 

The flow-density relation is one of the basic relations 
among traffic variables and provides a basic way to 
classify traffic states under heterogeneous traffic 
conditions. In this paper, traffic states are classified into 
free flow, synchronized and congested state by Kerner’s 
three-phase traffic flow [12]. The different traffic states 
and transitions between the states are represented in a 
states diagram, see Fig. 2. The characteristics of these 
states encompass a distinct manner of traffic evolution 
with respect to deterministic and nonlinear attributes of 
traffic flow. This observation is significant to the 
predictability of traffic flow; the more deterministic the 
evolution of traffic states the more predictable it is. 

As can be observed in Fig. 2, free flow state appears at 
low traffic demand. There occur transitions to other traffic 
states (congested state and synchronized state) depending 
on different traffic conditions. If the flow is rather high, 
traffic flow will change to the congested state. A transition 
to the synchronized state occurs when the traffic demand is 
relatively high. 

 
Fig. 2 Traffic states and transitions in the states diagram 

 
The synchronized state can be formed in the transition 

between the free flow state and the congested state. The 
speed in the synchronized state is a little lower than in the 
free flow state, but still high. The flow on average is 
relatively high with nearly optimal density. In this state, 
the future value of traffic flow is difficult to predict in that 
the observed nonlinear determinism along with the 
occurrence of stochastic reflects a complex traffic flow 
reality. 

In the congested state, the volume reduces, but the 
demand remains high; the vehicles slow down, the 
densities increase, and vehicles pack more closely 
together. During congestion the road system is operating in 
an inefficient manner, with increased vehicle delays, driver 
frustration, and greater potential for accidents. The traffic 
flow returns from the congested state to the free flow state 
directly or via the synchronized state and finally to the free 
flow state when the congestion dissolves.  

The three traffic states are illustrated in Fig. 3, using 6 
hours flow and density data collected from the studied 
area. As can be observed, historical traffic data has been 
successfully classified into three states by the flow-density 
relation. The historical traffic patterns for each traffic state 
can be built respectively according to the classified traffic 
data.  

 

 
Fig. 3 Different traffic states in the flow-density relation 

 



International Journal of Civil Engineering, Vol. 12, No. 3, Transaction A: Civil Engineering, September 2014 373 
 

2.2. Building historical traffic patterns 

Several historical traffic patterns of volume and density 
are developed for each traffic state according to the 
classified historical traffic data in the previous section. 
ARIMA models are flexible and widely used in short-term 
traffic flow forecasting [13, 14], which combines three 
processes: auto regressive (AR), differencing to strip off the 
integration (I) and moving averages (MA). Each of the three 
process types has its own characteristic way of responding 
to a random disturbance. The auto regressive process 
indicates weighted moving average over past observation, 
the integration process indicates linear trend or polynomial 
trend of the series and the moving averages process 
indicates weighted moving average over past errors. 

The ARIMA ( , , )p d q  model of the time series 

1 1{ , ... }tX X X  is defined as [15, 16] 

 
1 1 2 2 1 1 2 2... ...t t t p t p t t t q t qX X X X a a a a                  

 
(1

) 
 
where, 

tX  is obtained by differencing the original 

time series d times, 
ta  is the white noise component at t , 

, 1,2...i i p 
 are the autoregressive parameters, 

, 1,2 ...j j q  ，，  are the moving average parameters, p  

is the order of autoregressive parameters, q  is the order of 

moving average parameters and d  is the order of 

differencing. 
The process of building a historical traffic pattern for 

the classified traffic data is achieved by four steps, see Fig. 
4. The first step is model identification, in which use of the 
data and of any available information to identify potential 
models. The second step is model estimation, in which 
efficient use of the data to make inference about the 
parameters. It is conditioned on the adequacy of the 
selected model. The third step is model diagnostics, in 
which check the adequacy of fitted model to the data in 
order to reveal model inadequacies and to achieve model 
improvement. If valid then use the decided model, 
otherwise repeat the steps of identification, estimation and 
diagnostics. The last step is model index, in which use 
second-order autoregressive feature extractors of models 
to index the historical traffic pattern. The second-order 
autoregressive feature of historical traffic patterns of 
volume and density using 18 data sets is shown in Fig. 5. 

 

 
Fig. 4 Procedure of building traffic 
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Fig. 5 Second-order autoregressive feature extractors of historical traffic patterns of volume (left) and density (right) 

2.3. Pattern matching and forecasting 

The future value of traffic flow can be quickly 
predicted with the real-time traffic data by means of 
pattern matching technique to identify the current traffic 
pattern. The pattern matching technique will be done in 
two steps. The first step consists in extracting the second-
order autoregressive parameters of the current traffic data. 
In the second step we apply the Euclid distance, defined by 
equation 2, to measure the similarity between the historical 
traffic patterns and identified current traffic pattern.  

 
2 ( , ) ( ) ( )T
E T R T R T RD        

 
(2) 

 

here, R  is the autoregressive parameters of the 

historical pattern, T  is autoregressive parameters of the 

identified pattern. The historical traffic pattern that has 
smallest Euclid distance will be used in that it is the most 
similar with current traffic conditions. 

3. Implementation and Findings 

3.1. The traffic data 

The proposed prediction framework is implemented 
using data collected from the study areas (on a section of 
the Third-Loop Freeway, LIULIQIAO, Beijing city, to 
model and predict traffic flow. The dataset consists of 
traffic speed and volume in 2-minute intervals between 
March 1 and March 15 of 2013. Density is calculated from 
the speed and volume values. The dataset is separated into 
two subsets: the historical set that will be used to build 
historical traffic patterns and the test set that is chosen to 
encompass various traffic flow states during a day in order 
to test the accuracy of predictions. The collected traffic 
data is not smoothed because the relation between the flow 
and the density can be changed during the transition from 
one state to another, making accurate predictions more of a 
challenge. 

3.2. Prediction performance 

Prediction performance is evaluated using the Root 
Mean Square Error (RMSE) and the Mean Absolute 
Percent Error (MAPE): 

 

2

1

1
( )

n

t t
i

RMSE X F
n 
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1
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
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here, tX  and tF  are the observed and the forecast 

values of observation t , respectively, and n  is the total 
number of observations. 

3.3. One-step prediction of traffic flow 

For the purpose of prediction, several historical traffic 
patterns are developed for each traffic state according to 
the classified historical traffic data. The future value of 
traffic flow can be quickly predicted with the real-time 
traffic data by means of pattern matching technique to 
identify the current traffic pattern. A comparative study is 
conducted in order to evaluate the accuracy of the 
proposed pattern-based approach. The one-step prediction 
results for volume and density are demonstrated in Table 
1. As can be observed, pattern-based approach is capable 
of predicting more accurately the future value of traffic 
flow in all traffic states when compared to classical 
ARIMA models that only operate under time series 
consideration. Moreover, there is no significant difference 
between pattern-based predicted and actual values of 
traffic flow in that the average MAPE is less than 10%. It 
is also observed that pattern-based approach predicts 
volume and density with similar levels of accuracy in all 
the three traffic states. Consequently, the pattern-based 
approach adapts to transitional traffic conditions and is 
consistent with the heterogeneous traffic flow. 

 
Table 1 Comparison of pattern-based one-step forecasting with ARIMA model 

One-step forecasting
Day March 4 of 2013 

Address A section of the Third-Loop Freeway, LIULIQIAO, Beijing 
 Patten-based ARIMA 

Classical ARIMA 
 Free Synchronized Congested 

Volume 
RMSE 6.0516 5.8670 5.8670 7.4564 

MAPE(%) 8.25 9.86 8.80 11.97 

Density 
RMSE 5.8508 6.6120 5.8245 7.2023 

MAPE(%) 17.47 21.15 20.95 24.67 
 
Fig. 6 shows the series of actual versus predicted 

values of volume and density for the afternoon peak of a 
typical workday. Three traffic states and their transitions 
are depicted in Fig. 6, the time series from 14:00 to 17:00 
and from 20:00 to 21:00 shows the free flow state, from 

17:00 to 19:00 shows the congested state, and from 19:00 
to 20:00 shows the synchronized state. As can be 
observed, classical ARIMA models exhibit worse fit to 
actual values due to their tendency to focus on the mean 
values and miss the trends. Moreover, their prediction 
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performance of short-term traffic flow decreases sharply as 
traffic states transfer from one to another. It is also 
observed that both pattern-based approach and classical 
ARIMA models exhibit decreased performance in 

synchronized flow state. This is probably due to the highly 
nonlinear characteristics of traffic flow, as well as the 
frequent transition between extreme deterministic and 
stochastic structure. 

 

ARIMA 

Pattern-based approach 
Fig. 6 Actual (blue) versus predicted (red) values of volume and density in one-step prediction 

 

3.4. Multiple-step-ahead prediction of traffic flow 

The final stage of analysis is to implement the 
proposed framework to provide a multiple-steps-ahead 
prediction of traffic flow. For the purpose of three-step-
ahead prediction of traffic flow, the proposed framework is 
presented with volume and density data, as well as traffic 
pattern information on the deterministic and nonlinear 
features of traffic flow. The three-step-ahead prediction 
results for volume and density are depicted in Table 2. As 
can be observed, the three-step-ahead predictability of 
traffic flow by pattern-based approach slightly decreases in 

transitional conditions. The reason is that the hysteresis 
traffic data encompass information on the previous pattern 
and the information on the statistical features of traffic 
flow evolution is not presented to the network. As can be 
seen in Fig. 7, the hysteresis phenomena occurs when 
traffic state transfers from one to another, for example, 
from the synchronized state to free flow states, there are 
three steps hysteresis at 19:00. However, the classical 
ARIMA models predictability of traffic flow significantly 
decreases due to the predict model is not adapt to the 
variable traffic conditions. 

 

 
Table 2 Comparison of pattern-based multi-step forecasting with ARIMA model 

Multi-step forecasting 
Day March 4 of 2013 

Address A section of the Third-Loop Freeway, LIULIQIAO, Beijing 
 Patten-based ARIMA

Classical ARIMA 
 Free Synchronized Congested 

Volume 
RMSE 6.3941 6.1675 6.2578 8.0587 
MAPE(%) 10.16 11.56 10.70 12.39 

Density 
RMSE 2.1506 4.6159 3.6243 8.6902 
MAPE(%) 18.46 24.24 22.84 27.01 
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ARIMA 

Pattern-based approach 
Fig. 7 Actual (blue) versus predicted (red) values of volume and density in multiple-step-ahead prediction 

 
4. Conclusion 

This paper presents a methodological framework for 
enhancing accuracy of multiple-steps-ahead traffic flow 
prediction in transitional conditions. Forecasting is based 
on flow-density relation of traffic flow to classify traffic 
states and pattern matching technique to identify current 
traffic pattern, as well as classical ARIMA models to 
pattern-based prediction. Findings indicate that the 
proposed framework predicts the traffic flow for multiple 
steps into the future with enhanced accuracy when 
compared to classical ARIMA models that only operate 
under time series consideration with respect to both the 
RMSE and MAPE. 

In view of the above, the proposed framework presents 
several interesting features: first, it improves on 
performance of short-term traffic flow forecasting under 
heterogeneous conditions. Second, it is consistent with the 
variable evolution of traffic flow and can claim 
applicability in different traffic flow conditions. Third, it 
can claim transferability in that it is based on the joint 
consideration of volume and density relation and is 
detached from any site specific geometric characteristics. 
Finally, the accurate prediction framework has limited 
dependence on the near past traffic data that can readily be 
integrated into an intelligent transportation system. 
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